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ABSTRACT

This paper deals with the superpixel segmentation problem
using a powerful global optimization technique: Differential
Evolution. The algorithm mimics the process of nature evo-
lution to realize efficient optimization, and it poses no restric-
tions on the form of objective functions. This way, we de-
velop a novel and comprehensive objective function consid-
ering both local and global costs in the segmentation, includ-
ing within-superpixel error, boundary gradient, a regulariza-
tion term. The proposed method can produce superpixels in
a computational time linear to the image size. Experimental
results validate the competitive performance of our algorithm
in terms of boundary adherence and segmentation capability.

Index Terms— Superpixel, segmentation, differential
evolution, evolutionary computation, clustering

1. INTRODUCTION

Superpixel is a crucial image preprocessing technique that
receives increasing attention in many multimedia and com-
puter vision fields, such as salient object detection [1], im-
age segmentation [2], and visual tracking [3]. The technique
targets at oversegments an image into a number of percep-
tually meaningful regions (see Fig. 1). Compared with the
rigid pixel representation of images, superpixel representation
contains less redundancy and agrees well with human vision.
As a preprocessing step, superpixel can provide a substantial
speedup for the subsequent operation, since it greatly reduces
the number of elements to be processed.

Since the concept of superpixel segmentation has been
proposed [4], a lot of research efforts have been reported in
this area [5, 6, 7, 8]. Each of these methods may favor a
particular application, but generally the following three prop-
erties are desirable for a good superpixel algorithm. First,

This work was partially supported by the Macau Science and Technology
Development Fund under Grant FDCT/106/2013/A3, by the Research Com-
mittee at University of Macau under Grants MYRG2014-00003-FST and M-
RG017/ZYC/2014/FST, and by the National Natural Science Foundation of
China (NSFC) under Grant 61502542 and 61502178.

978-1-4799-7082-7/15/$31.00 c© 2015 IEEE

Fig. 1. Example DES results with different number of seg-
mentations. From left to right, up to bottom: 100, 200, 300,
400, 500, and 600 superpixels, respectively.

the boundaries of superpixels should stand on natural image
boundaries such that each superpixel overlaps with a single
natural object. Second, to enable the resulting superpixels
be friendly to human vision or some subsequent feature ex-
traction process, we prefer superpixels with relatively regular
shapes and similar sizes. Third, since the algorithm plays as
a preprocessing role, the computational complexity becomes
a critical issue to be considered.

To address these issues, this paper proposes a novel su-
perpixel segmentation algorithm termed DES. Different from
the existing work that optimizes the boundary adherence vi-
a minimizing local color variance [6, 7], DES optimizes this
global property in a more direct way by means of global op-
timization. We design a Boundary Gradient term to evaluate
the adherence of superpixel boundaries to the high gradien-
t components in the image. Further, to enforcing generating
homogenous superpixels, we introduce a Regularizer to mea-
sure the global variance of superpixel sizes. The two glob-
al terms, as well as the traditionally used local cost named
Within-Superpixel Error, is considered in the objective func-
tion. The optimization is then accomplished by Differential
Evolution (DE), a powerful stochastic global optimization al-
gorithm mimicking the nature evolution process [9, 10]. Ow-
ing to the low complexity of DE, the proposed algorithm sat-
isfies the computational restriction that it can produce promis-
ing superpixels with a linear computational complexity.



In the experiments undertaken, DES is tested on the
Berkeley segmentation benchmark [11], with standard perfor-
mance indices evaluated. Compared with a number of state-
of-the-art superpixel segmentation algorithms [5, 6, 7, 8, 12],
DES exhibits equally well or better performance.

2. RELATED WORKS

Algorithms for superpixel segmentation can be generally cat-
egorized as either seeding-based or graph cutting-based. In
this section, we review representative algorithms in these two
categories. Here it is to be noticed that superpixel segmenta-
tion is a different area from traditional image segmentation.
The area focuses on changing the representation of images
for the subsequent image processing tasks, and it puts tighter
limits on the time complexity.

2.1. Seeding-based superpixel segmentation

Algorithms falling in this category have a common method
that they identify a number of seeds (or centers) and grow
superpixels from the seeds. A very popular algorithm to re-
alize seeding is the K-means clustering, which are adopted
by the Simple Linear Iterative Clustering (SLIC) [7] and Lin-
ear Spectral Clustering (LSC) [13]. The K-means-based al-
gorithms produce superpixels that minimize local color vari-
ance. Compared with SLIC, LSC makes an improvement that
it uses a kernal function to realize nomarlized cuts effect of
the segmentation.

The Quick Shift (QS) [14] algorithm introduces a quick
medoid-shift algorithm for shifting the seeds towards high
density areas in the image. However, this algorithm cannot
offer explicit control over the number and size of superpixels.
Another popular work in this category is the Turbopixel (TP)
method [6]. By gradually dilates a set of regularly distributed
seeds using geometric flows, TP generates highly regular su-
perpixels, but, at the same time, the adherence to boundaries
is relatively low. Besides, the waterpixel (WP) [15] algorithm
first selects a number of markers and then perform watershed
transformation based on the makers and the image gradient.

2.2. Graph cutting-based superpixel segmentation

Many superpixel segmentation algorithms are based on grad-
ually adding cuts to the graph representation of images. The
most classical algorithm in this category is the Normalized
Cuts (NCuts) [4], which is also considered as a pioneer of su-
perpixel oversegmentation. However, the high computation-
al overhead limits the wide applicability of NCuts. In com-
parison, Felzenszwalb and Huttenlocher [5] propose a high-
ly efficient graph-based oversegmentation algorithm (GS) by
performing agglomerative clustering. GS arrives at a good
boundary adherence performance, but the resulting superpix-
els have very irregular shapes and variable sizes.

Considering more state-of-the-art, the Entropy Rate Su-
perpixels (ERS) [16] designs a new objective, namely, the en-
tropy rate of the graph, and optimizes it together with a bal-
ancing term. However, as reported in [16], the algorithm costs
about 2.5s to segment a 481 × 321 image so the time over-
head is relatively high. The Superpixels Extracted via Energy-
Driven Sampling (SEEDS) [17] cuts images by hill-climbing.
It possesses very promising computational efficiency in that
only pixels near the superpixel boundaries are evaluated in
the optimization. Nevertheless, SEEDS poses strict constrain-
t on the number of segmentations, and it also suffers from
shape irregularity of superpixels. Besides, Veksler et al. [8]
formulate the superpixel segmentation problem in an energy
optimization framework and develop two algorithms (EOpt0
and EOpt1) to generate compact and constant-intensity super-
pixels, respectively. The two algorithms provide good shape
regularity at the cost of large time overhead.

3. THE PROPOSED ALGORITHM

Compared with the above reviewed algorithms, the proposed
DES algorithm has the following distinctions: 1) compared
with the algorithms that cluster superpixels by local color
variance [7, 13, 6], DES directly embeds the global segmenta-
tion properties in the objective function; 2) compared with the
algorithms based on global optimization [4, 8], the computa-
tional cost of DES is significantly reduced by using a highly
efficient optimizer; 3) we also pay attention to the homogene-
ity of superpixels and avoid producing superpixels with vari-
ous sizes [5, 14, 16, 17]. Next, the framework and implemen-
tations of DES are detailed.

3.1. Framework overview

Fig. 2 depicts the segmentation pipeline of DES. Given an
input image I , we first blur the image by a mean filter to ob-
tain an image I ′. In this way, each pixel I ′(x, y) strores the
mean pixel values in the local neighborhood of I(x, y). The
algorithm iteratively seeds K points in I ′(x, y), where K is
the number of required superpixels. All the pixels in the in-
put image I are assigned to their nearest neighboring seeds
in I ′. After the assignment, we evaluate the segmentation by
three measures: Within-Superpixel Error, Boundary Gradien-
t, and a Regularization term, which are then aggregated into
a comprehensive objective function. The aggregated objec-
tive value of current assignment is propagated into the DE
algorithm consisting of mutation, crossover, and selection to
evolve even better seeds. The seed evolution, label assign-
ment, and objective evaluation steps are performed iteratively
for a number of generations. Finally, a postprocessing step is
conducted on the label matrix, which reassigns disjoint pixels
to their neighboring superpixels to enforce connectivity.



Fig. 2. The DES segmentation pipeline.

3.2. Objective function

Given a set of K seeds s = [s1, s2, · · · , sK ], each is a fea-
ture vector representing the superpixel center, the objective
function F (s) to be optimized is defined as

F (s) = fwse(s) + λ(−fbg(s)) + γfr(s) (1)

where fwse(s), fbg(s), and fr(s) stand for the within-
superpixel error, boundary gradient, and regularization terms,
respectively. Since we want to minimize fwse(s) and fr(s)
while maximizing fbg(s), in the aggregation, fbg(s) is pre-
fixed with a negative sign. Parameters λ and γ control the
relative influence of the three terms, which are fixed to con-
stant values. In the experiments of this paper, we empirically
use [λ = 0.2, γ = 0.8].

Within-Superpixel Error. This term is defined as the
summarization of errors assigning each pixel to its nearest
seed in s. We treat the color image in the CIELAB space
and represent each pixel by a five-dimentional feature vector
(l, α, β, x, y), where l, α, and β stand for light and color com-
ponents, and x and y denote the pixel coordinates. Without
loss of generality, the five components are linearly normalized
into range [0, 1]. Then, we multiply the l, α, and β compo-
nents by a coefficient η = 30 to enhance their relative impor-
tance in the feature vector. The L2 norm is used to compute
the distance between two feature vectors. Namely, given two
points a and b, the distance is

||a, b||2 =((la − lb)2 + (αa − αb)2 + (βa − βb)2

+ (xa − xb)2 + (ya − yb)2)1/2
(2)

Following [7], in the assignment step, we associate the
seeds with a limited window, i.e., only pixels located in the
small window can be assigned to the seed. This restriction
significantly reduces the computational overhead for distance
calculations and also facilitates producing compact superpix-
els. In this work, the window length is set to 3/2S, where

S =
√
N/K is the grid step of uniformly partitioning the im-

age with N pixels into K grids. It is also noted here that, in
the nearest seed assignment, each pixel uses the feature vec-
tor in the input image I , while each seed uses the local mean
vector in the blurred image I ′. Finally, after the assignment,
the within-superpixel error is calculated as

fwse(s) =
∑
(x,y)

||px,y ∈ I, sk ∈ I ′||2 (3)

where px,y is the feature vector of pixel (x, y) and sk is that
of its nearest seed.

Boundary Gradient. As introduced above, improving
the boundary adherence is a primary goal of superpixel seg-
mentation. However, we could not know the natural image
boundaries in prior, so the boundary gradient is used instead,
since it provides a signal of the boundary strength. Before
starting the algorithm, a gradient map of the input image is
calculated by performing the Roberts mask and is denoted
as ∆I . We evaluate the boundary gradient based on ∆I and
the current superpixel assignment as

fbg(s) =
1

|B(s)|∆max

∑
(x,y)∈B(s)

∆I(x, y) (4)

where B(s) is the obtained set of boundary pixels by assign-
ing pixels to the s, ∆max is the maximum gradient value for
the purpose of normalization.

Regularization. Since we partition the image with N
pixels into K superpixels, the expected number of pixels as-
signed to each superpixel is cm = N/K. The regularizer
punishes segmenting superpixels with sizes far away from cm,
which is defined as

fr(s) =
1

NK
||c(s)− cm||2 (5)

where c(s) = [c(s1), c(s2), · · · , c(sK)] denotes the number
of pixels assigned to each seed, N and K are divided for the
purpose of normalization.



3.3. Seeding via Differential Evolution

Our goal is to find a seed set s∗ to minimize the objective
function:

s∗ = arg min
s∈S

F (s) (6)

where S is the set of all feasible combinations of seeds. The
DE algorithm is introduced to efficiently finish this optimiza-
tion task. DE is a powerful stochastic global optimization al-
gorithm specialized in solving nondeterministic polynomial-
time hard problems. Mimicking the process of nature evolu-
tion, the algorithm maintains a population of individuals to
represent a set of solutions and evolves the individuals (solu-
tions) via mutation, crossover, and selection at each genera-
tion. The objective function to be optimized acts as the role of
environment, which evaluates the fitness of individuals. Mu-
tation and crossover breed new and possibly more competitive
offspring solutions. After evaluating the fitness, a rule named
“Survival of Fitness (SoF)” is used in the selection to update
the population. Finally, after a number of generations, the in-
dividual with the best fitness is outputted as the final solution.

In the proposed DES, the population maintains 5 individ-
uals. Each individual Xi is encoded by a 2K-dimensional
seed index vector that represents the coordinates of K seeds,
by which we retrieveK feature vectors from the blurred color
image. The search range of each seed is restricted in an S×S
grid in the image. As S =

√
N/K, the K seeds will be sam-

pled from the K uniformly partitioned regions, respectively.
In the initialization, the individuals are randomly generated
within the search space, with fitness evaluated according to
Eq. (1). Then, the following three operators are performed to
update the individuals.

Mutation. The mutation is performed on each individual
Xi to create a mutant vector Vi:

Vi = bXbest + 0.5 · (Xr1 −Xr2)c (7)

where Xbest is the best fitted individual, r1 and r2 are two
randomly generated indices, and the three individuals are kept
distinct.

Crossover. In crossover, each individualXi randomly ex-
changes some components from the mutant vector Vi with
90% probability in order to breed a trial vector Ui:

Ui,j =

{
Vi,j , if rand(0, 1) < 0.9
Xi,j , otherwise (8)

where rand(0, 1) a uniform random number generator, and
j = 1, 2, ..., 2K.

Selection. The fitness of the new trial vector is evaluated
according to Eq.(1). The trial vector will replace the individ-
ual once it has an equal or better objective value.

Xi =

{
Ui, if F (Ui) ≤ F (Xi)
Xi, otherwise (9)

In this way, individuals (solutions) that are more fitted to the
environment will be preserved in the population, a.k.a., SoF.

The above operators iterates for G generations in order
to output a satisfactory solution. The setting of G balances
the segmentation performance and computational overhead
of DES. We found that G = 10 is enough for producing
promising superpixel segmentation, and meanwhile the re-
quired time is relatively short.

3.4. Postprocessing

In the above superpixel segmentation procedures, we do not
explicitly enforce the connectivity of superpixels. Therefore,
there may possibly exist some “orphaned” pixels that are as-
signed with labels different from the sounding pixels. Follow-
ing the other algorithms [5, 7], we perform a postprocessing
step named “enforce connectivity” on the assigned label ma-
trix to correct the lables of these isolated pixels and obtain the
final segmentation results.

3.5. Complexity

Given an image of size N , the complexity of blurring the im-
age and calculating the gradient map is O(N). By restricting
the covering range of seeds in a limited window, the complex-
ity of label assignment is reduced toO(N), as reported in [7].
The cost in calculating the objective value (i.e., the fitness of
individuals in DE) is obviously O(N). The DE operation has
a linear complexity to the number of seeds and it is thusO(K)
complex. The seeding process iterates for a constant number
of times, which is independent withN andK. This way, DES
is O(N + K) complex. Since K � N , the term O(K) can
be omitted. To conclude, the proposed DES algorithm has a
linear complexity O(N) to the image size.

4. EXPERIMENTS AND COMPARISONS

The proposed DES algorithm is compared with five state-of-
the-art peer algorithms including GS [5], TP [6], SLIC [7],
EOpt0 and EOpt1 [8], and a baseline algorithm GRID [12]
that uniformly segments the image into K grids. These al-
gorithms are implemented based on their public codes. We
test the algorithms on the Berkeley segmentation benchmark,
which consists of 300 images with ground truth labels [11].
All the algorithms are coded by C++, and executed on the
same PC platform. Standard performance metrics are used
to evaluate different algorithms, including Boundary Recall
(BR), Undersegmentation Error (UE) [12], and the required
processing time per image. BR measures the proportion of
grand truth edges that fall within two pixels of the superpix-
el boundaries. UE matures the area of superpixels that slops
over the ground truth segmentation borders.

The quantitative results obtained by the algorithms for
segmenting 100-600 superpixels are compared in Fig. 3. To



(a) (b) (c)

Fig. 3. Performance comparison curves of different superpixel algorithms. (a) Boundary Recall. (b) Undersegmentation Error.
(c) Executing Time per Image.

Table 1. Performance metrics obtained by different algorithms when K = 300

GRID GS TP SLIC EOpt0 EOpt1 DES

Boundary Recall 0.4702 0.8752 0.7442 0.7988 0.7652 0.7754 0.9278
Undersegmentation Error 0.1749 0.1868 0.1175 0.1030 0.1075 0.1513 0.0993
Executing Time per Image 3.60E-4 0.1534 4.9589 0.1580 3.2751 4.8779 0.4214

make the comparison more clear, we list the numeric results
with K = 300 specifically in Table 1. It can be observed that
the proposed DES algorithm performs the best in terms of BR
and UE. Particularly, when a small number of superpixels is
required, the improvement brought by DES to the other algo-
rithms becomes more significant. GS obtains promising BR
values, but its performance on UE is relatively poor. Besides,
SLIC and EOpt0 provides perceptually satisfactory solutions
among the compared algorithms. On the other hand, consider-
ing the computational overhead, reported in Fig. 3(d), GRID
is the fastest as we can expect. Then, GS, SLIC, and the pro-
posed DES are among the fastest superpixel segmentation al-
gorithm category, whereas TP, EOpt0, and EOpt1 are much
more slower. Fig. 1 depicts visual results of the superpixels
generated by the proposed DES, with an increasing value of
K. Note that the algorithm not only provides good bound-
ary adherence but also its output superpixels have relatively
regular shapes and similar sizes.

The superpixel segmentation technique is commonly used
as a preprocessing procedure in image segmentation and the
related fields. Because of this, it is desired that, by using
superpixel segmentation, the subsequent algorithm obtains
not only substantial speedup but also promising segmenta-
tion performance. This can be investigated by assuming that
an ideal classification algorithm is performed after the super-
pixel segmentation. Each superpixel is hence assigned with
a label of ground truth segment within which the superpixel
overlaps the most. Fig. 4 shows five examples of the achiev-
able segmentation results based on DES, EOpt0, SLIC, and
TP, respectively. We can see that, DES exhibits better prepro-
cessing performance than the others, and it is more suitable to
be applied in the image segmentation and related fields.

5. CONCLUSION

We develop a novel superpixel segmentation algorithm, DES,
which can produce superpixels with good boundary adher-
ence efficiently. The promising performance of DES owes
much to the comprehensive objective function that consider-
s both local and global information in the segmentation. A
regularizer is also aggregated in the objective, so as to gen-
erate homogenous superpixels with similar sizes and regular
shapes. To optimize such a complex model, we use a state-
of-the-art global DE algorithm. DES is efficient, whose com-
putational complexity is O(N). Qualitative and quantitative
experimental results show that the proposed algorithm work-
s well on the Berkeley segmentation benchmark in terms of
boundary recall, undersegmentation error, and time overhead.
In the future, we will further consider the noisy and cluttered
environments and try to develop more robust DES to handle
these situations.
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